Miombo research in Angola, present situation and perspectives

Francisco M.P. Gonçalves

Miombo Network Meeting, 3 - 4 June

Forest cover in Angola

• Angola forest cover (57.85 M ha)

Moist tropical forest (only 2%)

Forest mosaic, incl. Miombo (ca. 62.8%)

Ryan et al. 2016

Julbernardia paniculata

Scientific research in Angola

Angola harbours an rich and exceptional biodiversity;

Actually ca. 6850 plants species, including many endemics;

Most of them were documented from the Angolan miombo ;

Unfortunately historical factors hampered the progress of scientific research Angola;

Scientific research in Angola

Recent initiatives have contributed significantly to actual knowledge of the Angolan miombo;

TFO - The Future Okavango Project and SASSCAL covered areas of the Okavango basin in Angola, Namibia and Botswana and other woodlands in Zambia and South Africa;

Threats to miombo woodlands

Röder et al. (2015); Gonçalves et al. (2017); Chiteculo et al. (2019)

Threats to other woodlands

Stellmes et al. (2013); De Cauwer et al. (2018); Chiteculo et al. (2018)

Shifting cultivation

Forest recovery after cultivation

Mature woodlands

Gonçalves et al. 2017

The underground forests of the Bié plateau

Within miombo there are another formation, characterized by species developing anual aerial parts and enormous underground woody parts - so called "geoxyles", "geoxylic

suffrutices" or "anharas de ongote" in Angola.

The underground forests of the Bié plateau

Differences in key PFTs between trees and geoxyles reflect both life form specific adaptations to hostile environmental conditions and lineagespecific strategies to cope with environmental stresses

Functional traits and symbiotic associations of geoxyles and trees explain the dominance of detarioid legumes in miombo ecosystems

Amândio L. Gomes^{1,2} ⁽²⁾, Rasmus Revermann^{2,3} ⁽²⁾, Paulina Meller² ⁽³⁾, Francisco M. P. Gonçalves^{2,4} ⁽³⁾, Marcos P. M. Aidar⁵ ⁽³⁾, Fernanda Lages⁴ ⁽³⁾ and Manfred Finckh² ⁽³⁾

¹Faculty of Sciences, Agoutabo Neto University, Are. 4 de Feverino 71, Luanda CP 815, Angola: ²Biodiversity, Evolution and Ecology of Plants, Institute of Flant Science and Microbiology, University of Hamburg, Ohuhorens: 18, Hamburg 22609, Germany: ³Faculty of Natural Resources and Spatial Sciences, Namibia: University of Science and Technology, Windhock 10005, Namibia: ³Department of Natural Sciences, Herbarium of Labargo, ISCED Halla, Sarmento Rodrigues str., Labargo CP 230, Angola: ³Plant Physiology and Biochemistry, Institute of Beat Sciences, Strandor 19, 2019 (2019). ³Center Sciences, Herbarium of Labargo, ISCED Halla, Sarmento Rodrigues str., Labargo CP 230, Angola: ³Plant Physiology and Biochemistry, Institute of Beat Sciences, October 2019, 19, Dec. 19, 2019. ³Center 2019, 19, 2019. ³Center 2019, 2019, 2019. ³Center 2019, ³Cente

Author for correspondence: Amândio L. Gomes Email: algomes.jg.elb@gmail.com

Received: 30 July 2020 Accepted: 18 December 2020

New Phytologist (2021) 230: 510-520 doi: 10.1111/nph.17168

Key words: ectomycorrhiza, Fabaceae Detarioideae, geoxyles, geoxylic grasslands, Rhizobia, trait-based plant strategies, trees.

Summary

 The miombo region in Africa is covered by a mosaic of woodlands and geoxylic grasslands and is subject to disturbances such as fires, frost and drought, and low nutrient availability. The dominance of Fabaceae Detarioideae species in miombo ecosystems is remarkable but Ittle understood. We therefore compared plant functional traits (PFTs) of common woody species of the Angolan plateau, grouped by life form (trees, geoxyles), lineage (Fabaceae: Detarioideae, non-Detarioideae) and symbiont association (ectomycorhiza, hizobia).

PFTs reflect group-specific adaptations to prevalent environmental conditions. To analyse
the impact of environmental drivers, we selected PFTs reflecting ecophysiological aspects of
leaf morphology, nutrient content and water transport. Traits were measured following standardized protocols.

 We found differences in key PFTs between trees and geoxyles reflecting both life formspecific adaptations to environmental conditions and lineage-specific strategies to cope with environmental stresses. We interpret higher leaf thickness and higher wood density of geoxyles as responses to harsher open environments. Fabaceae in general and ectomycornizal species showed better nutrient status.

· Symbiotic associations of detarioid legumes with ectomycorrhiza show specific advantages

Surveying the woodlands of Huíla province

○ Vegetation surveyed in a total of
 456 plots, all trees with (DBH ≥ 5 cm) were measured;

Classification using ISOPAM
 (clustering) to describe tree
 communities;

○ Diagnostic species were determined using phi_coeficient (threshold ≥ 30 and *p*-value < 0.05);</p>

Chisingui et al. 2018

Classification of the woodlands

semiarid woodlands

lucens ssp. antunesii

Chisingui et al. 2018

First vegetation database of the woodlands of Huíla province

GIVD Database ID: AF-AO-001			Last update: 2021-05-17
Vegetation-Plot Datab	base of Woody Species	Web address: http://iwww.gi	vd.info/ID/AF-AO-001
from Huíla Province			
Database manager(s): Francisc huila.ed.ao); José Tchamba (josé	o Gonçalves (francisco.goncalves@ e.tchamba@isced-huila.ed.ao)	⊉isced-huila.ed.ao); António Chi	isingui (valter.chissingui@isced-
Owner: ISCED-Huíla, Rua Sarm	ento Rodrigues, N.º 2, C.P. 230, Lu	ubango-Angola	
Scope: The database contains i of Huíla province, Angola. The s the available field guides.	nformation on diversity, abundance species were locally identified base	e and diameter (DBH>5 cm) of ad on familiarity of team membe	woody species from the woodlands ers with local/regional flora or using
Availability: according to a spec	ific agreement	Online upload: no	Online search: no
Database format(s): Excel		Export format(s): Excel, CSV file	
Plot type(s): nested plots		Plot-size range (m ²): 100 to 1000	
Non-overlapping plots: 448	Estimate of existing plots: 448	Completeness: 100%	Status: completed and continuing
Total no. of plot observations: 448	Number of sources (biblioreferences, data collectors): 0		Valid taxa: 193
Countries (%): AO: 100%			
Formations: Forest: 100% = Te	rrestrial: 100%		
Guilds: [NA]			
Environmental data (%): altitud 100%; land use categories: 100 on soil characteristic.	de: 100%; slope inclination: 100% %; soil depth: 100%; other attribut	; surface cover other than plant es: At least one soil sample per	ts (open soil, litter, bare rock etc.): plot was collected, depth depends
Performance measure(s): pres trees: 100%	sence/absence only: 100%; numb	er of individuals: 100%; measu	rements like diameter or height of
Geographic localization: GPS	coordinates (precision 25 m or less): 100%	
Sampling periods: 2010-2019:	100%		
Information as of 2021-0	5-17; further details and future u	pdates available from http://w	ww.givd.info/ID/AF-AO-001

http://www.givd.info/ID/AF-AO-001

Gonçalves et al. submitted

Forest management planning in miombo forest, case study Huambo province, Angola

attributes

Chiteculo & Surovy, 2018

firewood

Forest management planning in miombo forests, case study Huambo province, Angola

Pattern of height-diameter and stem volume for miombo species, shows faster increase in earlier stages and slower in later stages (Naslund function model)

Chiteculo et. al. 2018

Descriptive study of the different ecological variables of Miombo in Huambo province, Angola

Semi-random distribution of 49 veg_plots in the Central Angola Plateau, Huambo province

Miápia data, 2020

Ecological Distribution Patterns

la > 1: Aggregate spatial pattern; la = 1:Random spatial pattern; la < 1 Regularspatial pattern

Miápia data. 2020

Evaluation of the pulpability of some species from the Angolan miombo woodlands

Transversal sections of *B. spiciformis* sapwood and heartwood at 4X (A and B), sapwood and heartwood at 100X (C and D)

Sangumbe et al. 2018

Chemical composition of wood from *B. spiciformis* and *P. angolensis*

Components (%)	B. spiciformis	P. angolensis
Cellulose	$50,1^{a} \pm 1,07$	41,9 ^b ±2,12
Hemicelluloses	$17,6^{b}\pm0,78$	26,5ª±2,19
Arabinose	$0,04^{b} \pm 0,07$	$1,04^{a} \pm 0,27$
Mannose	$0,36^{b}\pm 0,08$	$1,24^{a} \pm 0,09$
Xylose	12,45 ^b ±0,05	$14,58^{a} \pm 0,09$
Glucose	$0,11^{b} \pm 0,07$	$3,38^{a} \pm 0,35$
Galactose	$0,09^{b} \pm 0,07$	$1,37^{a} \pm 0,14$
Rhamnose	$0,04^{b} \pm 0,08$	$1,28^{a} \pm 0,28$
Uronic groups	$4,52^{a} \pm 0,64$	3,58 ^b ±1,06
Acetone/water extractives	5,6 ^a ±0,24	4,6 ^a ±0,95
Lignin	22,5 ^b ±0,7	29,2ª±0,22
Holocellulose	$68,0^{a}\pm0,37$	$67,7^{a} \pm 1,09$
Alpha-cellulose	49,3ª±1,8	40,0 ^b ±1,58
Lignin S/G ratio	$1,72^{a}\pm0,07$	0,89 ^b ±0,08

Different letters indicate significant differences between species (p < 0.05).

Sangumbe et al. 2018

Deforestation increased up to 13,7% from 2000-2013 (Potapov et al. 2017)

Fires is showing an alarming trend in Conservation areas (Catarino et al. 2020)

Climate change will bring more frequent and intense droughts in many parts of Angola

Wivalço Gomes (unpub. master thesis)

Conclusion words-how the network can contribute to restoration in Angola

- Despite efforts made by the academia and scientific researches institution, there is a need for more studies;
- Miombo woodlands in Angola are threatened by increasing human activities;
- \circ Adding to that the Angolan government have changed the law, which now authorises exploitation of natural resourses in conservation areas;
- This include the Okavango basin, where important oil reserves have been discovered. So, there is an urgent need for restoration actions to mantain important ecosystem services and functions;

UNITED NATIONS DECADE ON ECOSYSTEM RESTORATION 2021-2030

THANK YOU FOR YOUR ATTENTION

francisco.goncalves@isced-huila.ed.ao

Contributors

Amândio L. Gomes António V. Chisingui Lino M.V. Sangumbe Luís Manuel Miápia Vasco Chiteculo