Forest cover monitoring in Africa using Landsat data

M. Hansen, P. Potapov, S. Turubanova, A. Tyukavina University of Maryland

> R. Moore, M. Hancher Google, Inc.

Data requirements for large area land monitoring

- Systematic global acquisitions
- No/low cost
- Easy access
- Minimal pre-processing required

Supervise classification workflow

Landsat data processing workflow

Landsat data processing workflow

Landsat data ordering and processing at the USGS EROS

3. Order and Download data using Landsat bulk order interface

4. Check for product level (L1T vs. L1G) and GCP error statistic to filter out images with poor registration.

1. Create WRS2 Path/Row catalog for the AOI

2. Search for relatively cloud-free scenes (70-80% max cloud cover) over selected area, time interval, and season

http://landsat.usgs.gov/Landsat_Search_and_Download.php

Landsat data processing workflow

Landsat data processing workflow

Per-pixel quality assessment

166/072 1999-2000 growing season

Dec. 5, 1999

166/072 1999-2000 growing season

Apr. 12, 2000

166/072 1999-2000 growing season

Apr. 28, 2000

Jan. 8, 2001

Feb. 26, 2001

Apr. 14, 2001

Apr. 30, 2001

Dec. 26, 2001

Jan. 11, 2002

Feb. 13, 2002

Feb. 29, 2002

Dec. 26, 2002

Jan. 14, 2003

Mar. 3, 2003

Mar. 19, 2003

May 6, 2003

2000 5-4-3 composite

Landsat data processing workflow

Landsat data normalization

Global MODIS TOC reflectance as normalization target

Best cloud-free observations for the peak of vegetation season over 10 years of data (2000-2009)

Correct for view geometry effects

Uncorrected imagery

Bias-adjusted TOA

Anisotropy-adjusted

Landsat data processing workflow

Landsat data normalization

Global MODIS TOC reflectance as normalization target

Landsat normalized reflectance (median spectral reflectance from 2000-2005 composite) MODIS TOC reflectance (mean spectral reflectance from 2000-2009 peak greenness composite)

Indonesia

Indonesia, Riau province

Image# : 001 WRS : 126059 Year : 1999 Day : 251

Indonesia, Riau province

Image Process

• Raw Digital Numbers

Image# : 001 WRS : 126059 Year : 1999 Day : 251

Indonesia, Riau province

- o Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization

Image# : 001 WRS : 126059 Year : 1999 Day : 251

Indonesia, Riau province

- o Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Image# : 002 WRS : 126060 Year : 1999 Day : 251

Indonesia, Riau province

- Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Image# : 002 WRS : 126060 Year : 1999 Day : 251

Indonesia, Riau province

- o Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Image# : 002 WRS : 126060 Year : 1999 Day : 251

Indonesia, Riau province

- o Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Image# : 003 WRS : 127060 Year : 1999 Day : 258

Indonesia, Riau province

Image Process

- o Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Compositing...

Image# : 092 WRS : 126060 Year : 2002 Day : 227

Indonesia, Riau province

Image Process

- Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Cloud-free mosaic

- 92 images total
- more then 20 per path/row
- 3 years of data!

Image# : 093 WRS : 127059 Year : 2002 Day : 234

Indonesia, Riau province

Image Process

- Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Keep adding data...

Image# : 115 WRS : 126059 Year : 2003 Day : 198

Indonesia, Riau province

Image Process

- Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Keep adding data...

Scan Line Corrector (SLC) failed – May 2003

Image# : 115 WRS : 126059 Year : 2003 Day : 198

Indonesia, Riau province

Image Process

- Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Adding SLC-OFF data...

Image# : 166 WRS : 127060 Year : 2004 Day : 304

Indonesia, Riau province

Image Process

- Raw Digital Numbers
- Top-of-Atmosphere reflectance and Normalization
- Cloud masking and Compositing

Adding SLC-OFF data...

Indonesia, Riau province

Number of clear-sky observations for 1999-2005 time interval

1-7
8-13
 14-20
21-30
31-56

Landsat data processing workflow

Multi-temporal metrics approach

- Image composite metrics
 - Time-sequential (start/end date) composites
 - Annual composites for results post-processing
- Rank-based metrics
 - Reflectance values distribution within time-series
- Trend analysis metrics
 - Change in reflectance between consequent observations
 - Linear regression of reflectance signal versus observation date
 - Reflectance signal and change corresponding to segments of signal gain and drop.

Image composite metrics

Time-sequential composites

Republic of the Congo Circa year 2010

Image composite metrics

Image dates for time-sequential image composites

Shortcomings of time-sequential composites

Forest probability Year = forest = no-forest

Image composite metrics

Shortcomings of time-sequential composites

Indonesia: Band 5 difference 2000 – maximum for 2000-2005

- Ranked by band value (b3, b4, b5, b7, NDVI, NBR)
- Ranked by corresponding band/index value (b3, b4, b5, b7)
 - NDVI, NBR, Brightness temperature

Trend analysis metrics

- Slope of linear regression of band reflectance vs. image date
 - Single-date observations
 - Annual median reflectance
- Standard deviation of reflectance value
 - Single-date observations
 - Annual median reflectance

Riau province, Indonesia

2000-2005 metric space

- Comparing SWIR band reflectance from Max value composite vs. year 2000 composite
- Using slope of linear regression between reflectance and observation date

Riau province, Indonesia

2000-2005 metric space

- Comparing SWIR band reflectance from Max value composite vs. year 2000 composite
- Using slope of linear regression between reflectance and observation date

Landsat data processing workflow

2000 5-4-3 composite

2012 5-4-3 composite

Mashonaland West

Red=loss, green = tree cover, blue = gain

Forest loss

Forest loss by year

Forest gain

Southern Zambezia

Red= loss, green = tree cover, blue = gain

Forest loss

Forest loss by year

Forest gain

Mashonaland West

No gain

Red=loss, green = tree cover, blue = gain

Forest loss

Forest loss by year

2000	2005	2012

Forest gain

Trends in loss

year

National and regional forest cover change mapping projects

DRC and RoC training led by Patrick Lola Amani of OSFAC and UMd

Summary

- Pre-processing of data sets for user-friendliness is critical
 - With national-scale normalized cloud-free inputs, almost any method of characterization can work
 - Automation of pre-processing enables fast *iteration* of historical record as new understanding and/or methods are realized
- Key to activity data in addition to quality is latency
 - How to produce timely information on national forest dynamics?
 - Methods should be more formally evaluated in this regard days/weeks for production of national-scale products
- Analyst-driven characterization is key to providing ownership of the mapping process and products
- Validation is critical
 - Not ground lies, not model sensitivity, not using opportunistic sites
 - A probability-based sample of independently-derived estimates of the variable of interest is required
- Landsat acquisition strategy, cost and access model and pre-processing should be emulated by other systems
 - Sharing of methods within this context is very straightforward
- Portability
 - Our method has been implemented globally and at national scales for Indonesia, the USA, European Russia, the DRCongo, the Republic of Congo, Peru and Colombia
- Very high spatial resolution capabilities should be initially used in sampling mode for validation and/or estimation (not for mapping)

